国产女人AAA级久久久级_欧美zooz人禽交杂交_亚洲Av不卡免费看_午夜刺激性爱免费视频

Deacidification Knowledge

Company NewsDeacidification NewsDeacidification Knowledge

The Effectiveness of Deacidification Procedures

The Effectiveness of Deacidification Procedures

This section presents six areas for determining the effectiveness of any process as a deacidification technology and suggests scientific information that can be required in evaluation. In general, it is the responsibility of libraries and archives to specify the information they want for evaluation and test methods, while it is the responsibility of vendors to supply this information.

1.The ability of a process to accomplish complete and permanent neutralization of strong and weak acids and acid-forming chemicals, i.e., alum, in the paper of books and documents is a required evaluation issue. We need the paper to come through treatment without any free acid present in it in order to stop the acid attack on the cellulose. We also need to understand the details of the chemistry behind this reaction. All papers or books treated for purposes of evaluation must be done in an operating facility (minimum pilot scale) and not in a laboratory level apparatus, because the pilot facility will be more representative of the process in a production mode.

2. Deposition of an adequate and uniform amount of alkaline reserve compound in the paper by a process is important in achieving the optimum enhancement of the paper's stability to aging. Once the paper has the optimal amount of alkaline reserve, there appears to be no significant advantage gained by putting in more. We should prove to ourselves that the process under evaluation can, by whatever mechanism it uses, reproducibly deposit an optimum amount of its alkaline reserve compound in the paper itself and do this in a uniform manner in all parts of the book or document. We should understand the method of deposition of the reserve compound, i.e., physical or chemical, and–if the latter–the chemistry behind the reserve formation. Moreover, we also need to address the process’ ability to achieve these results simultaneously in many books or documents. Thus we will need to get data from the vendor that address the deposition mechanism, the presence of the reserve at the paper fiber-matrix level in a single sheet, and the uniformity of deposition at three levels: (1) two neighboring sheets in a book or group of documents, (2) a single volume front to back, and (3) the entire set of books or documents from different locations in a treatment chamber. Again we are requiring that all books or documents be treated by the process in a regular run of the operating or pilot facility.

3. Deposition of a permanent alkaline reserve compound is essential for a long-lasting deacidification effect. We need to be sure of this permanence, since several processes in the past have failed because the treated paper reverted to an acid pH after a period of time.

4. How well is the treated paper stabilized under exposure to accelerated aging conditions of heat and humidity? This is the principal benefit in which we are investing our dollars when we buy deacidification. We should expect to see an estimated lifetime increase in the range of three to five times for treated papers with the correct amount of alkaline reserve in them. An acceptable process would demonstrate it can stabilize a variety of papers in this range. The notion that an evaluation procedure must set a minimum value on the enhancement figure is too limiting, because different papers respond differently to different processes. All test papers should be treated in a routine run of the pilot facility.

5. Is the process effective in treating different formats such as folios, boxed manuscripts, and maps? If we want to treat parts of the collections other than books, this is a very important point to evaluate in considerable detail. The approach here is no different from what we do to reassure ourselves about how a process works on books. We need to look at data that show the alkaline reserve levels and document level deposition patterns, but we should not have to look at additional data on pH and accelerated aging because these effects will be there if the reserve is present. Those who want a quick look at pH could use the color indicator technique, where a dilute solution of chlorophenol-red is painted on the page. The yellow [acid] to purple [alkaline] color change shows the presence of alkaline pH. We will also need to readdress every large-scale treatment and logistical issue for each format, including the effect of different containers.

6. Information on a proposed quality-assurance program is essential to evaluating a proposal to treat our collections. We should understand that for any process done on a day-to-day basis, there will be some variation in the results of the treatment. In addition, there could be a major variation in the treatment due to unforeseen circumstances that would produce an out-of-specification batch. It is important to monitor this variation against some acceptable standards of expected quality of treatment that we, the customer, set and the vendor tries to meet. A quality control program attempts to do this routine monitoring of the product's quality.

Tags: