There are at least three compelling reasons to consider mass deacidification technology as an option for preserving certain original materials in local collections and as a vital part of coordinated preservation efforts in the United States. First, there is the long-observed chemical effect that neutralizing or removing the acid in machine-made paper, coupled with the inclusion of the correct amount of a basic salt in that paper, markedly stabilizes the paper's principal chemical component, cellulose, and prevents the paper from becoming weak and brittle. This stabilization slows down the chain-cutting acid hydrolysis reaction in the giant cellulose molecule, thereby allowing it to retain its chain length and hence the paper's strength for much longer periods of time than it would with acid present. There is also some evidence that the oxidative degradation of cellulose, a lesser effect that also decreases its chain length, is retarded by deacidification. Laboratory aging experiments on deacidified papers and on machine-made alkaline paper have shown that these papers remain flexible and usable for long periods of time compared to their acid paper controls. Accelerated aging techniques predict that acid-free papers with an alkaline reserve in the paper at the I to 2 percent level by weight should last three to five times longer than their acidic counterparts. Real-time observations on paper manufactured acid-free and alkaline in the early 1900s by the S.D. Warren paper company have shown little degradation under natural aging conditions.
Important research spanning a good part of this century has developed a sound scientific basis for understanding this stabilization phenomenon, which is the technical reason behind the use of mass deacidification. [Researchers include Edwin Sudermeister at the S.D. Warren paper company; William J. Barrow at the Barrow Research Laboratory; Richard Smith at the University of Chicago; and George Kelly, John Williams, Donald Sebera, and Chandru Shahani at the Library of Congress Research Laboratory, among others.] It is also the basis for efforts to increase the use of alkaline paper in books.
Second, there are enormous and growing library and archival collections in all types of formats that are weakened and brittle. Currently, there are a number of concerted efforts to grapple with the task of transferring the information printed on this brittle paper to secondary preservation formats such as microforms. Deacidification will not help to preserve the information on already brittle paper because its principal utility is to preserve original paper formats that have some strength to start with. It can play a major role, however, in keeping the balance of collections that are on stronger paper from becoming brittle for long periods of time. This is an important contribution to the overall preservation effort because the amount of embrittled paper that must be reformatted is large and will require many years of work and continuing large-scale funding to complete. Moreover, instead of perceiving time as the enemy of preservation efforts, the time gained by deacidification can be used in the future to implement new preservation approaches that are still under development.
Third, for perhaps the first time, there is a preservation technology on the edge of adoption that has the potential to stabilize large quantities of books, manuscripts, maps, and other paper records at a reasonable unit cost. Of course, such an effort will take a great deal of funding, planning, and physical effort, including moving large quantities of items out of and back into a collection. But mass deacidification's high production capability could well result in the treatment of an entire research collection over a period of one or two decades.